Development of a Strontium Iodide Coded Aperture Instrument

by

Lee Mitchell, Eric Grove, Bernard Phlips

Introduction

- Development towards Coded Aperture System for short gamma-ray burst (sGRB) detection and localization
 - Wide Field of View (90 deg fully coded)
 - Imaging energy regime 20-600 keV
 - Detection up to 1 MeV
 - Reduced SWAP to increase mission opportunities
- Space Test Program (STP) is the primary provider of spaceflight DOD space science and technology community.
 - International Space Station
 - Secondary payloads
 - Dedicated launch services.
- Strontium Iodide Radiation Instrument (SIRI)
- Proposed Development of Prototype Strontium Iodide Coded Aperture (SICA) array
- Full-sized Instrument (SICADA)

Strontium Iodide Radiation Instrument (SIRI)

Strontium Iodide Radiation Instrument (SIRI)

- Instrument Description
 - Single RMD Srl₂:Eu detector (17 x 17 x 40)mm³
 - SensL 2x2 J-series SiPM array
 - low power COTS MCA (Kromek) and SBC (BeagleBone Black)
 - time stamped event data
- Objectives
 - Study the internal activation of the Srl₂:Eu in a space environment (altitude ~ 500 km)
 - SiPM performance and degradation over 1 yr mission life
- Current Schedule
 - Instrument assembly and GEVS testing (next few months)
 - Spacecraft integration begin summer 2016
 - Launch summer 2017, Falcon 9, ESPA ring

Strontium Iodide Coded Aperture

27U cube

SICA prototype

Objectives

- sGRB detection and imaging
- in the FCFOV Rate 2-3/yr
- Small instrument increases likelihood of STP selection
- 3 years from start to launch
- Reasonable position accuracy
- Imaging regime (20 600 keV)

Description

- Detector Plane 8 x 8 array of Srl₂:Eu 3.2%@662 keV (pitch 1.0 cm)
- Fach Detector 0.8 cm x 0.8 cm x 5cm
- Mask Tantalum 30 x 30 each element (1cm x 1cm x 0.5cm)
- COTS electronics, with some custom main boards
- Mask 20 cm from detector plane
- Fully Coded Field of View (FCFOV) = 58°
- Angular Resolution (AR) = 2.9°
- Power = 13W

Note: Position accuracy = AR/SNR

Strontium Iodide Coded Aperture Detector Array (SICADA)

- Full Sized version of (SICA)
- Objectives
 - Increased sGRB detection rate (~8/yr) over the prototype
 - Improved positional accuracy
 - Energy regime 20 keV 600 keV
 - Larger instrument with background rejection
 - SWAP and costs start limit mission options
- Description
 - Detector Plane 40 x 40 array pitch=1cm thickness 5cm
 - Mask Titanium 108 cm x 108 cm x 0.5cm (pitch 1cm)
 - Larger number of channels (more custom electronics required)
 - FCFOV = 90°
 - AR = $^{\sim}2.0^{\circ}$ (20 arcmin for a 6 sigma detection)
 - Mass ~ 300 kg
 - Power 20-30W
 - Active BGO shield on back and sides of detector plane

Strontium Iodide Coded Aperture Detection Array (SICADA)

SICADA Simulations

- Simulated 1 photon/cm²
 sGRB 5° off axis
- Added internal background (due to activation)
- Need to add galactic diffuse and albedo background contributions

Without internal background

With internal background

Conclusion

- The duration of sGRBs $(T_{90} < 2s)$ associated with LIGO type events requires wide FOV for detection.
- A small instrument such as SICA would allow us to rapidly get something into the STP queue
- A larger more sensitive instrument (SICADA) is ideal but larger SWAP limits mission opportunities and increases cost

